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I. Financial Report.

The University of Wisconsin Modelling, Information Processing and Control (MIPAC)

Facility began operation in October, 1983, with initial acquisitions of equipment provided

for under the DoD University Instrumentation Program. The equipment was funded by two

separate grants, one from the Air Force Office of Scientific Research (Grant No. AFOSR-83-

0281, $110,000) and one from the Army Research Office (Grant No. DAAG29-83-G-0056,
$26,000). The following items were acquired from Hewlett-Packard, Inc. under Grant No.

AFOSR-83-9281 in accordance with University of Wisconsin policies and procedures.

Cost

1. Purchase Order No. UAD 078Y002 Dated: 9/29/83 $101,706.01

This purchase order covered the initial acquisition of our

Hewlett Packard 5451C Fourier Analyzer and related peripheral
equipment. Specifically, the items purchased from Hewlett-
Packard, Inc. are as follows:

5451C Fourier Analyzer, Options 600 & S23

10833B HPIB Cable

10697D Field Add-on: S83 Var Resis Scope

620 DAC Module

350 Vibration Con

451 Less 5477A

After some months of initial operation it became clear that
more flexible use of the Hewlett-Packard 5451C Fourier
Analyzer required acquisitions and installation of a different

~ operating system for the attached HP 1000 computer and a tape

cassette unit in the Fourier Analyzer's HP 2648A graphics
terminal. The complete acquisition from Hewlett-Packard,

Inc. which covered these, and related, items is summarized below:

2. Purchase Order No. UAD 924C055 Dated: 6/30/84 6395.50

12747H 128 KByte Memory Board

92068A RTE IVB System
92068A Opt. 031, 7906 Disc Media
12539C Time Base Generator

12966A Buffered Asynchronous Interface, Option 001

13236B Cartridge Tape Refit for HP2648A Graphics Terminal
13261A 2648A ROMS (Software for Cartridge Tape Unit) ITR 252

The Ftinal acquisitions under the subject grant were three disk
cartridges and four boxes of tape cassetes for use with the

HP 5451C's hard disk unit and tape cassette unit, respectively.

These are listed below.

3. Purchase Order No. UAE 924C545 Dated: 9/27/84 980.00

5 Cartons HP 98200 A Cartridge Tapes

4 HP 12940 A Disc Cartridges

TOTAL $109,0111.51

11



II. Scientific Report

MODELLING AND PARAMETER ESTIMATION

FOR DISTRIBUTED VIBRATORY SYSTEMS;*

A Report on Research Projects at the MIPAC Facility

of the University of Wisconsin, Madison, to June 30, 1984

by D. L. Russell**

ABSTRACT

Citing data collected and analyzed with the University of Wisconsin MIPAC

(Modelling, Information Processing and Control) Facility electronic measurement and

analysis equipment, we make some general comments concerning mathematical models

which appear to be appropriate for modelling certain vibratory systems of

distributed parameter type. Aspects discussed include: location of vibrational

spectra, damping rates, and spectral displacement due to ma: !. density and/or

elasticity variations. Particular emphasis is placed on some properties of

segmented beams. The article ends with a preliminary mathematical discussion of the

feasibility of parameter identification, from vibrational spectrum data alone, in

the wave and Euler-Bernoulli beam equations.

*Supported through the DoD University Research Instrumentation Program (FY 83): Air

Force Office of Scientific Research under Grant No. AFOSR-83-0281 and Army Research

Office under Grant No. DAAG29-83-G-0056.

**Mathematics Research Center, University of Wisconsin, Madison, WI 53706, U.S.A.
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MODELLING AND PARAMETER ESTIMATION

FOR DISTRIBUTED VIBRATORY SYSTEMS

1. Introduction.

Beginning in October, 1983, we have been developing the University of

Wisconsin Modelling, Information Processing and Control (MIPAC) Facility

with the cooperation of the Department of Mathematics, the Department of

Elentrical and Computer Engineering and the Mathematics Research Center. Our

ob ectives in the operation of this Facility are as follows:

1. Better understanding of physical processes:

(a) From the dynamical point of view;

(b) From the point of view of measurement capabilities and limitations;

(C) From the point of view of our ability to model the process mathema-

tically.

2. Development of modelling techniques:

(a) Qualitative model identification;

Wu) Model calibration and parameter estimation.

3. Development of information processing techniques:

(a) Instrument capabilities and limitations;

(b) Noise limitations;

(c) Discretization problems;

} (d) Mathematical information processing.

4. Developmen. of real time control techniques:

(a) Actuator capabilities and limitations;

(b) Real time computational capabilities and limitations, including

discretization problems;

(c) Mathematical control law development.

Initial grants from the Air Force Office of Scientific Research and the Army
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Research Office, with additional assistance from the Wisconsin Alumni Re-

search Foundation, have enabled us to acquire and begin operation of a two

unit Facility, incorporating an Analysis Unit and a Model Development Unit.

The electronic equipment acquired includes a Hewlett-Packard 5451C Fourier

Analyzer, a Bruel & Kjaer Vibration Exciter and supporting peripheral units.

The University is providing us with approximately 1500 square feet of newly

remodelled laboratory space which we expect to overcrowd very quickly. At

present two faculty members and two research assistants are working with the

facility and we expect to add an additional senior staff member in the autumn

of 1984.

The paragraphs and figures which follow do not constitute a research

paper as such but, rather, a description of the work which we have been carry-

ing out in the MIPAC Facility, indications for LuLure modelling work, both of

a mathematical character and of the laboratory sort, and sketches of some of

the mathematical questions likely to enter into our work. Not everything is

reported here; we have not, for example, discussed our extensive laboratory

work with various types of nonlinear oscillators.-

One point which we wish to make very strongly is the way in which physi-

cal data can prompt and direct mathematical investigation in unexpectedly signi-

ficant ways. We will illustrate this in Section 3 by exhibiting data obtained

from segmented beams and discussing, briefly, the implications as regards the

mathematical work required to provide an anlytical framework to correspond to

and explain what we observe.

4In Section 2 of this article we discuss data obtained from vibrations of

uniform beams. This provides a necessary background for Section 3 and also

allows us to discuss important laboratory evidence in regard to the relation-

ship between the frequency of a mode of vibration and the rate at which that

4



mode of vibration is attenuated through internal energy decay.

The last section of this article, Section 4, is an analysis of the feasi-

bility of first order mass density estimation/identification on the sole basis

of observed spectral data. We will see how a very practical engineering

problem leads to some quite interesting and intricate mathematical questions

connected with completeness and linear independence of certain sets of functions

derived from the eigenfunctions of a vibrating system.

We will freely use terminology common in the literature of discrete

Fourier methods. The reader is referred to [ 5 1 for definition of these

terms and development of the related theory.

5
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2. Frequency Distribution and Damping for Uniform Thin Beams.

There are a number of ways in which the natural frequencies of vibration

of an elastic body may be determined. The one which we, along with others,

have used in connection with various types of beams is extremely simple but

qtite effective. The beam is tapped, once, and quite smartly, with an appropri-

ate hammer or similar instrument. The resulting vibrations of the beam are

transformed into eloctric signals by an accelerometer attached to the beam.

The data acquisition functions of the Fourier analyzer are triggered and the

accelerometer signals are read in and recorded. A record such as is shown in

Figure 1 is obtained. The corresponding discrete Fourier transform and the

associated power spectrum are computed. This procedure is repeated a number

of times, typically 25 to 50, and an averaged power spectrum is obtained,

whose logarithm is then computed and displayed, as in Figure 2. In the process

the beam is struck at random points along its length to ensure excitation of all

modes.

The log averaged power spectrum (LAPS) for a thin beam (approximately 2 mm.

thick, 25 mm. wide and I meter long) of mild steel, clamped at one end and free -

at the other, obtained as indicated above, is shown in Figure 2 for the frequency

range 0 - 2500 Hz. Depending on where one stops counting, 11 or 12 distinct modes

of vibration, whose associated natural frequencies are indicated by the sharp

peaks in the LAPS, appear. Beyond about 1200 Hz. the peaks become indisting-

*uishable from the ambient noise and are no longer significant. The measurement

used in this case was the acceleration of the beam at the free boundary.

In Figure 3 we show the same spectrum, now restricted to the range 0 - 1000 Hz.,

-. in order to compare it with similar LAPS obtained from other types of beams. Fig-

ure 4 exhibits the spectrum from a thin aluminum beam. This beam is highly flex-

ible and, as a result, the number of spectral peaks, corresponding to natural

6
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frequencies, occurring in the range 0 - 500 Hz. here is comparable to the num-

ber occurring in twice that range in Figure 3. In Figure 5 we see the LAPS

obtained from a thin hardwood beam. In this case a much smaller number of nat-

ural modes of vibration is observable, perhaps because higher modes are over-

damped in this case. In Figure 6 we see the spectrum obtained from a segmented

wooden beam, actually a good quality carpenter's rule obtained at a local hard-

ware store. The most significant feature occurring in this case, the gap bet-

ween approximately 140 Hz. and 280 Hz., will be discussed in Section 3 below.

The decay of amplitude with increasing frequency evident in Figures 4

*through 6, in contrast to Figure 3, is not particularly significant. Figure 3

was obtained using acceleration data while Figures 4 through 6 were obtained

from velocity data.

Since we are, eventually, interested in control applications, we will place

particular emphasis on the properties of systems which are important in this con-

nection. A very old argument, re-disputed by every new generation of control

theorists, concerns the necessity and/or advisability of distributed parameter

representation of spatially extended vibrating continua such as beams, plates,

shells, etc. We are hardly prepared to pronounce judgment on this unresolvable

question but we are in a position to make a few relevant remarks.

First of all, it is evident that any reasonable answer to the question must

take into account the mode of anticipated excitation and the mode of output. evalu-

ation. Here we restrict attention to the latter. Figure 3 corresponds to accele-

ration measurements. Here the higher frequencies do not fall off very markedly,

in contrast to Figures 4 through 6, taken with velocity measurements where, if

we take into account that this is a logarithmic plot, nothing beyond the first

two or three modes is of much significance.

If we assume the worst case (best case for the proponents of distributed

S-9



parameter theory) corresponding to Figure 3, we see that adequate modal descrip-

tion of the system might require use of a linear system whose dimension is on

the order of 20. A distributed parameter approach necessarily presupposes

the use of some approximation procedure, e.g., one based on spline functiouis,

in the final application. Assuming approximation via cubic splines, a system

dimension of 20 allows subdivision of the spatial domain into about 8 subinter-

vals. Comparison should be made between modelling and control results obtained

with this number of subintervals and corresponding results obtained using a

modal representation. The frequencies present in the model will not be identi-

cal in the two approaches and, perhaps more importantly, the control and/or

4V disturbance input coefficients (L 6 1) obtained via the two approaches will

differ. We feel that it will be interesting to see how the performances compare

when the two contenders are matched to each other in this way.

Without pre-judging the outcome of the contest we have just proposed, let us

proceed under the assumption that a distributed parameter model is to be used.

The simplest thin beam model based on partial differential equations is provided

by the Euler-Bernoulli equation

w + EX w =0,tt xxxx

where e is the mass per unit length and EI is the bending modulus. In the un-

#forced, clamped case, which corresponds to our data, the appropriate boundary con-

ditions are

w(Ot) =0, w (0,) =0,

x

w (L,t) 0, w (L,t) 0,
xx xxx

where L is the length of the beam. With

icot
w(x,t) = e z (x)

we find that
10



2
_- z + EIz - 0

and with o f (p/EI) we must have

z(x) a c sin(o( ( x)+c cos(ocLO x)+c sinh(O(C x)+c cosh(aoe x).
1 2 3 4

The boundary conditions at x = 0 imply

S+ c O, c + C 0,
2 4 1 3

so that, with c =-c c, c = -c =d,
3 2 4

z(x) - c(sin( 6 x) - sinh(a(W x)) + d(cos(PCW x) - cosh(oe W x)).

Taking the second and third derivatives at x - L we obtain the equations

c(-sin(cw L)-sinh(OCW L))+d(-cos((w L)-cosh(O(W L)) = 0,

c(-cos(P w L)-cosh(o(Wo L))+d( sin(i CO L)-sinh(o(, L)) - 0.

The obvious determinant condition then gives

(-cos(o(Wo L)-cosh(c( W) L))(-cos(aIC" L)-co.5h((-' Q)

-(sin(o(W L)+sinh(0t4.' L))(-sin(a W L)+sinh(o(u L)) 0

or, taking familiar identities into account,

1 + cos(o(cO L)cosh(,Ct4 L) = 0.

Examination of the data from which Figure 2 was obtained reveals the fol-

lowing approximate values for the frequencies 40 and their square roots (Wo)
k k

W~



Table 1

Wk (k

2.97 1.72
19.54 4.42
53.72 7.33

107.50 10.37
178. 13.34
266. 16.31
374. 19.34
495.5 22.26
635. 25.20
788.5 28.08
942. 30.69

Since, asymptotically, o(O ) L+ (k - )'", we obtain the approximate
k

value which must be assigned to (L (from averaging the last five values in

the table)

XL - r.1,/s) 1 0.s + 9. + 8.5 + 7.5 + 6.S
(30.69 28.08 25.20 22.26 19.34/

a 1.062.

using this value to predict w via solution of the equation provided by the
I

determinant condition we obtain the value

CL) = 1.76
1

which may be compared with the observed value 1.72. As the observed value may

be signif.cantly lowered by movement of the supports and the mass of the acceler-

ometer, we may regard this as fairly good agreement. Thus the Euler-Bernoulli

model appears to be reasonably accurate in predicting the observed frequencies

of the beam in this case.

This example does point out, however, one aspect of the distributed parameter

approach which must be taken into account. This approach presupposes a certain

model or class of models. If exact spectral matching is important it may be a

serious disadvantage that no member of the model class is actually able to achieve



the observed spectral pattern. This is true for the observed beam frequencies

shown above if the Euler-Bernoulli model is assumed at the outset: no spatially

constant , El can achieve exactly the spectral pattern shown, even though

the beam is, to every outward appearance, completely uniform. We will have more

to say about variable coefficients in Section 4 of this article.

It seems likely that a distributed parameter model, such as the Euler-Ber-

noulli model or some finite element approximation thereof, will have significant

advantages from the point of view of on-line identification because of the = Iler

number of parameters necessary in order to describe the model, as compared, for,

example, with a set of equations

X u. x + b u (u the applied control)

k kk k

derived, from a moda. drsription. While the ltter, because_ of te large, numhs=

of parameters involved, permits more or less exact frequency matching, the very

ultiplicity of parameters present makes for unstable, ill-conditioned identi-

fication. The more modest number of parameters involved in a model with an a

priori assumed structure makes the identification task a much more tractabl ,

problem.

The Euler-Bernoulli equation in its commonly written form

1.wt + EIw - 0
Stt +Exxxx

corresponds to conservation of the energy form

CL 2 2
f (OC(w) + EI(w ) )dx,

where w is lateral deflection and L is the length of the beam. The constants

and EI are mass per unit length and bending modulus, respectively. It is well

known that energy losses in fact occur and that these losses are frequency depend-

ent. This is amply documented by inspection of Figure 1 wherein it is clear that

13



the high frequency components of the motion are attentuated much more rapidly

than are the low frequency components.

A quantitative appreciation of the dependence of damping rate on frequency

can be obtained by taking a number of consecutive time records after each exci-

tation of the beam and computing the corresponding power spectra separately.

The LAPS may then be overlayed and the vertical positions of the peaks at the

same frequency compared .n order to estimate the damping rate. In Figure 7,

which shows the fr. .z;Jy ri:rge 0 - 500 Hz. for the same beam as was used in

Figures 2 and 3, -4,ur such consecutive spectra are overlayed, the peaks being

darkened for easy comparison. The vertical gap between successive peaks is

proportional to the damping coefficient for the mode with the indicated fre-

quency. Our experiments indicate a rough linear proportionality between the

damping rate and the frequency in modes 1,2,4 and 5,.becoming more nearly con-

stant in modes 5 through 7. The anomalous behavior of mode 3 is thought to be

due to energy transfer to a torsional vibration mode whose frequency is close

to that of the third lateral mode shown. The linear dependence of damping rate

on frequency is more impressive in Figure 8, which shows tio successive overlayed

spectra for a. different beam.

A linear damping / frequency ratio corresponds to what is called struc-

tural damping in the engineering literature 1 4 1. As shown in [ 3 1, it is

consistent with the model

ow+ Ahw + Aw=

where A is the operator Iw defined on an appropriate domain and A is the
xxxx

unique positive definite square root of A.' It is also consistent with computed

exponential solutions of the partial differential equation

w -h. •EIwu-0
Stt VtxX+ xxxx
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with the boundary conditions

w(ot) = 0, w (Ot) a o,
x

EIw (Lt)-Yw CL,t) = O, w (L,t) - 0.
xxx tx xx

The semigroup theory related to this equation may be based on the energy dissi-

pation law

(d/dt) CwC',t),w (Lx (x,= J dw -t 1! 0t t

but it remains to be shown that the generator is a spectral operator, which is

necessary if we are to be able to draw conclusions from the spectrum of the

operator, and that the semigroup is a holomorphic semigroup. It is clear -that

this system deserves substantially more attention in the future.

16
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0

3. Vibration Spectra of Segmented Beams.

Most large structures, including the rather exotic examples that have come

to be known as "large space structures", are not single units but are, rather,

assemblages of many small units joined together in various ways. Thus, in many

respects, simple systems such as the wave equation, Euler-Bernoulli beam equa-

tion, thin plate quation, etc , have unrealistically simple structure as com-

Dared with real systems. On the other hand it is clear that one cannot develop

a th.ory of distributed parameter systems on the basis of structures of arbi-

trary complexity; there has to be some unifying pattern and, inevitably, this

involves a degree of simplification. One is led to seek out, as a consequence,

a class of systems simple enough to admit some hope of analytical treatment and

yet possessing enough intricacy to carry one beyond the very simplest mod ;.

It seems to us that the models representing the vibration of segmented beams are

ideally situated on this middle ground between simplicity and complexity.

For the purposes of this article we will consider a beam occupying a spatial

interval which, without loss of generality, we may take to be [0,1], and simply

supported at x = 0 and x =1Y . By "simply supported" we mean that the boundary

conditions

w(O,t) = 0, w (Ot) - 0, w(1lt) - o w (f,t) = 0
xx xx

apply.

We will suppose that the interal 0,V I is divided into N segments of eq-

ual length by means of the points

x , 0, x " (kWt)/N, k = 1,2,...,N.
o k

In each of the intervals I E Ex ,x It k a 1,2,...,N, we assume that the Euler-
k k-i k

Bernoulli beam equation (here simplified with unit coefficients)

I. ! IP :'-,,.. .. ........."" ' -" .. ." ...



W +W S0
tt xxxx

is satisfied (whether in a classical or distribution sense need not concern

us here) while, at the junction points, x , we impose conditions which reflect
k

our assumptions about the nature of the joints there. Here we will distinguish

only two different types, shown schematically in Figure 13:

Flexible joints: in this case the energy expression is

p1' 2 2 N 2
S ((w C(x,t) + (w (x,t)) )dx + h Ze(w Cx +,t)-w Cx -,t))
N0 t xx k=l x k x k

e' denoting the stiffness coefficient for the joints. Conservation of energy

requirements then lead to the partial differential equation indicated above

and the junction conditions

S ,t) =-w Ix -,t) = S'(w (X +,t) w (x-.,t)), -.

xx k xx k x k x k

w (x ,t) =w (x-,t),
xxx k xxx k

w(x +,t) = w(x -,t), k = 1,2,...,N-l.
p.,/., :k k

Here f(x+) means lim f(x+y), etc.

y40

Massive stiff joints: here we suppose that no macroscopic degree of bending

occurs at the joints, which are mazsively rei-.iforced by structures having very

little spatial extent but appreciable mass. In this case, if the reinforcing

masses have mass m, the energy expression becomes
r( 2  2 N 2
-(w (xt)) )dx + hm 1(w (x ,t))

JIAWXJ x Ikcl t k

Energy conservation assumptions then lead to the same partial differential eq-

uations as before and the junction conditions

18.0, %



w(x +,t) - w(x -,t),
k k

w (x+,t) =w (x-,t), w (x ,t) w (x-t),

x k x k xx k xx k

mW (x ,t) = w (x -,t) - w (x +,t),.k = 1,2,...,N-l.
tt k xxx k xxx k

Before discussing the theoretical aspects of these systems, let us consider

some of the experimental results. These were obtained with a segmented wooden

beam, consisting of short, thin hardwood segments, fastened to eadh other, end

to end (a folding carpenter's rule was used, in fact). The resulting segmented

beam was clamped at one end and left free at the other; thus, as far as the boun-

dary conditions are concerned, the experimental apparatus does not exactly match

the theoretical model described above. However, we expect the effect of different

boundary conditions to be small and quantitative rather than qualitative. The

experimental beam has slightly flexible joints, including the joint at the point

where it is clamped.

In different experiments, varying numnbars of segments of the beam were ex-

tended out from the clamping apparatus. In each case the beam was excited by

striking and the LAPS was obtained using the Fourier analyzer. The resulting

power spectra for beams composed of 5, 7 and 8 projecting segments are shown in

Figures 9 through 11, respectively. It will be observed in each case that 5, 7

and 8 vibrational frequencies appear at the low end of the spectrum and then there

is a gap until the next frequency appears, as indicated by the peak just to the

left of the 300 Hz. point. Another group of frequencies occurs, not too dis-

tinctly, from 300 Hz. to 400 Hz., approximately.

In Figure 12 the preceding three figures are superimposed. What is striking

is the fact that the first group of 5,7 and 8 frequencies, depending on the num-

ber of beam segments, fills approximately the same frequency range in each case,
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(a) Eight segment flexibly jointed
beam; general motion.

(b) Eighth mode of either beam.
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while the next frequency appears at roughly the same location in each case.

How is this pattern to be accounted for? We will see that examination of the

theorectical model provides an explanation. We will do this only in the context

of the flexible joint model but we will make some remarks relative to the massive

stiff jointed model as well.

Let us note that in the simply supported, N segment case, if the segments

were infinitely stiff by comparison with the joints, we would expect to find a

certain number of modes of vibration corresponding to bending of the structure

at the joints, the segments remaining straight.. It is easy to see that the re-

sulting linear dynamical system has dimension 2(N-1); there will exist N-1 os-

cillatory modes corresponding to bending at the joints. As the stiffness of the

beam segments decreases relative to that of the joints, these vibrational fre-

quencies will decrease and the mode shapes will change somewhat but the character

of these first N-1 modes will remain much the same as long as the beam segments

remain quite stiff relative to the joints.

Now let us consider the N-th mode. In the unsegmented, uniform case it is

easy to see that the modal function, i.e., eigenfunction, in this case is

0 (x) - sin(Nx).
N

However, because this function has zero values and second derivatives at the

points x , k = 1.2,,..,N-l. all of the boundary conditions there imposed on the
k

segmented beam are satisfied by 0 (x) and we conclude that this is the N-th
N.

eigenfunction in the segmented case ao well - no matter what the value of N may

be. This reasoning will apply to the 2N-th, 3N-th, etc., modes as well. One can

also see that the frequency of vibration of the mN-th mode agrees with the m-th

modal frequency of a beam of length Y/ N. If we pose the same problem on an

interval of length NT' , which corresponds. to the experimental reality where

the length of the beam depends on the number of projecting segments, we then see
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that the frequency of vibration of the mN-th mode is invariant - it always agrees

with that of the m-th mode of vibration of a simply supported beam of length Ift

This observation correskonds to the near invariance of the (N+l)-st mode in our

experiments (the index shifts from N to N+l, however, because the experimental

beam is free at one end and a flexible joint exists at the clamped end, thus

introducing an additional mode of vibration for the infinitely stiff case).

In the uniform, unsegmented case, the first N-I frequencies of the simply

supported beam would be distributed throughout the interval between 0 and the

frequency of the N-th mode, the k-th modal frequency being roughly proportional
2

to k . Because of the additional flexibility permitted by bending at the joints,

however, those frequencies are all significantly lowered in the segmented case

(recall that the k-th eigenvalue of the operator EIw minimizes the so-called
xxxx

Rayleigh quotient

subject to the imposed boundary conditions and orthogonality to the first k-i

eigenfunctions; additional flexibility results in a numerator which is somewhat

smsller relative to the denominator. Since the N-th modal frequency is unchanged

as we pass from the uniform to the segmented case, a "gap" opens up between the

N-th mode and the (N-i)-st mode. (This corresponds to the gap between the N-th

and (N+l)-st modes in the experimental situation which we have described.)

Similar gaps may be expected to occur between the mN-th and (mN-1)-st frequen-

cies with the (m-l)N-th through (mN-l)-st frequencies being, relatively speaking,

clustered together.

Examination of the second type of system, involving massive, stiff joints,

may be expected to uncover a similar pattern of clu-sters and gaps; again the mN-th.

modes will not change from the uniform case, the massive joints remaining motion-

less at the nodes, while the intermediate modes will exhibit depressed frequeifies

23
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due to the additional inertial effects of those masses (which make the denominator

of the Rayleigh quotient larger).

The results sketched here may be expected to have some importance in control

applications. The spectral gaps which we have described can be used to advantage

to permit control and/or observation of the clustered modes in the first group

without excessive interference from the modes in the second, or higher, groups

which will be separated from the first group by the spectral gap whose origins

we have discussed here. It is clear that the subject deserves more careful and

precise mathematical treatment, incorporating estimates and asymptotic expressions

for the eigenvalues and eigenvectors of these segmented beam systems. In this

connection we are happy to note that some contributions in this direction have

recently been made by Chen[ 2 1.

-.1
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4,. Parameter Estimates from Frequency Data.

The subject matter of this section is best illustrated by reference to

Figure 14. The thin steel beam from which the log-averaged power spectra of

Figures 2 and 3 were obtained was first excited in its original configuration

and then, after its mass had been modified by the addition of several small

permanent magnets near its center, as illustrated in Figure 1S. The two

power spectra were superimposed to produce Figure 14. In this figure the super-

imposed power spectra produce double peaks, i.e., peaks lying near each other.

In each case the peak to the left corresponds to the beam with additional mass,

as would be expected. A very natural question then arises: is it possible to

reconstruct the modified mass distrioution from the observed perturbations of

the vibration spectrum? Our purpose in this section of the paper is to discuss

a first order approach to this problem from a mathematical point of view. Some

theoretical studies yielding more or less global uniqueness results for mass/

elasticity distributions versus frequency spectra obtained with various boundary

conditions have been presented by McLaughlin 1 101, E 11].

Let us consider a second order linear system in a Hilbert space X:

y + Ay =0, yJ CA) C X,

(densely)

where A is an unbounded self-adjoint operator on X with eigenvalues X , k = 1,
k

2,3,... of finite multiplicity and, without loss of generality, nondecreasing,

with

lim 0 =0,
keoo k

the corresponding normalized eigenvectors 0 , k = 1,2,3,..., being selected so
k

as to form an orthonormal basis for X. We let> 0,0.
k k k k k k

____ . 25
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As is well known, the above second order equation is associated with the

first order system

adVc) 0- xy

and the operator

-A 0

generates a strongly continuous -group of bounded operators on Y x X, where Y is

the closure of A(A) C X with respect to U U , the norm associated with the inner

product initially defined by

A A
(y"y) . Y, yiC+ A)y) , y 6eOA),

being selected to the I + A is strictly positive.

A scalar obse.-:_ion

z~t) - CyCt), ) - Ct), ), Z M Y, ', x,
Y X

00 00

kal klk , k-lkk

00 ~2 00 2

is a continuous function of t which may be expressed, assuming it to be real

valued, in the form

. W i t 0 e-iCjkt.

St)- z k +k
ikl k kal k

If the operator A is perturbed to the operator A + A, having the same
properties, but with eigenvalues + , "frequencies" W + W , and (non-

normalized) eigenvectors 0 + 50 , 0 E E , and if the same observa-
k k k k

tion process is used, there will result the modified scalar observation

27



e + -dt 00 (k +S10k)t

k=l k kal k

Through the use of discrete Fourier techniques the frequencies W*k+SWk (real

exponents if X < 0) can be estimated, though with some additional difficulty if~. ~ k

there actually are N < 0. Then the identification question which we'wish to ad-
k

dress is this: assuming the (hence the ) ) and the 0 known (i.e., the
k k k

operated A is assumed to be known completely), and assuming the Wt +Sw4 to be
k k

"adequately estimated", which means that the 3 have been estimated, can we det-
k

ermine, at least in first order approximation, the operator perturbation 9A?

Before going on, we should remark at this point that any identification tech-

nique for 9A based only on observations 5(t) must, in effect, address the same

problem, for the ', are, except for rates of decay, etc., arbitrary sequences
k k

if the solution of the system is unrestricted and, therefore, the only real infor-

mation available conziats of the to , equivalently the , albeit perhaps in
k k

an indirect form.

The first order analysis (see [ 7 1, t 13 for more details) rroceeds as

follows. Accepting the equations

XC )I+CA+ A)) 0 + ) = 0, k = 1,2,3,...,
k k k k

we take the inner product of each left hand side with the corresponding 0 to

obtain, taking into account S 6 t 0 k
k k

(0, SAO) = , k= 1,2,3,..
k k X k

In some cases the equation is originally given in the form

My + Ay= 0

with M bounded, self-adjoint, and strictly positive. To study variations M -

M + SM, A remaining fixed, one now takes the 0 to be the solutions of the
k

modified eigenvalue problem (-XM + A)q = 0. The corresponding equation is then
k



(0, MO ) +, (0, SM ) MO 0, k = 1,2,3,...
k kX k k' k kX

Assuming the 0 normalized relative to m, the above becomes
k

(0 M logX
k k k k

k

Mwhich we can use in the same way to infer properties of the perturbation SM.

This second problem is usually simpler than the first and will be used for most

of the examples which we cite here.

Consider the more specific case wherein 'y + Ay = 0 is the abstract version

of the partial differentail equation

m(x)y +ZY=0, t> 0, 0 x-L,
tt

where m(x) is the mass per unit length of the medium occupying the spatial inter-

val £O,L2 and 0, the elasticity operator, is paired with boundary conditions

making it a self-adjoint operator. If the normalized eigenfunctions are 0 Cx),
k

k u 1,2,3,..., i.e.,
fo C~X)0kCX)01" (x)dx -= k

then the problem of determining to first order a small mass variation m(x) leads

to the infinite set of equations
f L 2J 'm(x)0 (x) dx - , k 1,2,3,...,

ok k k

constituting a moment problem on 0 x L. We will assume that

k~w k k

exists. Then, sinceLm 2

f (x)( (x)) dx = 1, k = 1,2,3,...,
fo k

replacing Sm(x) by Sm(x) - Am(x) we arrive at a similar problem with A replaced

by zero. Thus, without loss of generality, we may assume

29

-J7



rn =0.

k~oo k k

The'rate at which S / ) tends to zero will ordinarily determine our choice of
k k

function space for m(x) to lie in. It should be noted that if we think of gm(x)

as a mass rotating about the x-axis at a distance 0 (x), then the expression

is L fm(x)( 
(x ) ) 

o 
dx 

k

is, in fact, the moment of inertia of gm(x) about the x-axis. Thus the moment

problem in fact consists of finding gm(x) with moments of inertia S /2 ,
k k

k - 1,2,3,... (assuming no X = 0, of course).

k

In this paper we will confine attention to the two questions of existence

and uniqueness. For the existence question we suppose the 9A arbitrary, sub-k

ject to , / having an appropriate rate of decay as k.oo, and ask if a solut-
k k

ion m(x) exists in a corresponding function space. The uniqueness question is

posed in an equally self-evident way. It turns out that uniqueness essentially

never obtains without further restriction on the form of Sm(x). The resolution

of the existence question varies from one example to another. It is, in reality,
2

the question of the linear independence of the functions 0 (x) in the appropri-
2 k 2

ate space, which we usually take to be L 10,L]. If the functions 0 x) , k 1,
k

2,3,..., are strongly independent, i.e., there exist biorthogonal functions *(x),
2

k 1,2,3,..., also in L [0,L3, such thatf _ 2 lk j,
(x) (x) dx

k kj 0k j
then we have a formal solutionk= 0, k

m~)= - (x),3~

r whose convergence, depending on the properties of the W, can be investigated
subsequently.
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There is .othing about the problem in the abstract which can guarantee

that the linear independence referred to above obtains in general. If we take

m(x) =I, L=2q, and

ty a y11

with periodic boundary conditions

yCO) - y(20)) 2

then the eigenvalues are = , = = k , k = 1,2,3,...;
0 2k 2k-1

all but X having multiplicity 2 and the corresponding eigenfunctions are
0

0 Cx) - cos(kx). , -0 Cx) z sin(kx) , k = 1,2,3,...,
2k -ifF 2k-i i-

while the simple eigenvalue 0 is associated with the eigenfunction 0 (x) = 1

The squared eigenfunctions are'then
2 2

-- lizfr'". -(1I/lr)cos (kx), (1/'IT)sin'(kx),;,k ",= 1,2,3,...,
2 2

and, since (1/jr)cos (kx) = (1/1) - (1/Ir)sin (kx), this set of functions is

certainly not linearly independent in any sense. In this case a necessary con-

dition for solvability of the moment problem is clearly

o 2k 2k-1

and a general existence result for solutions of the moment problem cannot be

obtained for arbitrary frequency perturbations via a first order analysis.

* What may fairly be regarded as a "prototype" case arises again for m(x)

al, L=T'(, and

y = I

but with separated boundary conditions

a yO) + b y' O) 0, a y (IT) + b y'(1') = 0,
0 0 1 1

2 2 2 2
a +b #0, a +b # 0.
o C 1 1
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In all of these cases the eigenvalues are non-negative and simple, the zero

eigenvalue = 0 occurring only in the case a = a = 0. There are four
0 0 1

principal cases to consider:
2

Case 1: a = a = 0. Here = 0, X = k , k = 1,2,3,..., and
o 1 o k

(x) -1/f , 0 (x) = (1/-?)cos(kx).
o k

2 2
Case 2: b # 0, b # 0, a + a p 0. Here the eigenvalues, all posi-

o 1 0 1
tive, have the form

2
= k 2+&(l), k = 0,1,2,...,

and with

(A) U- = k +&(I/k)
k k

the eigenfunctions take the form

0Cx) = 9cos(cO x + ' ,
k k k k

where
)k " (I/ ) + 9(1/k) , &k=  (l/k).

7k kc

Case 3: b = 0, b # 0 (the "mirror image" case b 0 0, b = 0 will not be
o 1 0.

treated separately). Here the X are again all positive and, asymptotically,
k2 + (1) ,*

k

while the eigenfunctions and frequencies are given by
0Cx) sinC Wx), k = 1,2,3,...,

k k k

= (k- ) + (l(/k), -z) = (/2) + 9 (1/k), k = 1,2,3,...
k k

Case 4: b • b - 0. Here k • , k - 1,2,3,..., and
o 1 kc

0 (x) a C1/11)sinCkx), k- 1,2,3,....

-- "2



As noted earlier, in all cases we may assume the variation Sm(x) replaced

by mn + Sm(x), where m is a constant and0 Y 0

"m(x)dx - 0.
2 2

Since (1/21Y)cos (kx) = (1/21f) - (1/21 )sin (kx) and gm(x) has been assumed

orthogonal to constants, Cases 1 and 4 may be treated together, without loss of

generality as Case 1. Here
2

(1/21r)cos (kx) = (1141Y)(1 + cos(2kx)),

and again making use of the above orthogonality property, the moment problem

reduces to

Sm(x)cos(2kx)dx -41 ? Ik , k 1,23, s

,'V the case corresponding to = 0 already having been taken care of, assuming0

+0. The fnctiens cos(2kx) are, of course, orthogonal on UO,lrJ'and,

hence, independent. Adjoining 1, sin2kx, k a 1,2,3,..., and normalizing we have

an orthonormal basis for L [0,1Y]. The unique solution of the moment problem

orthogonal to constants and even in the sense

Smr-x) = M(X)

is, formally,
00 2

m(x) = -2A!'()/k )cos(2kx)
k= k

and is convergent in L Lo,/rj as long as 'A =(y(k ).k

If the even-ness requirement is removed, the solution is highly non-unique, since
2

one can add to Sm(x) any function mA(x) in L [0,10 which is odd in the sense

'A Am(x- X) =-m(x).

Case 3 is mathematically nontrivial but, fortunately, the work has already

been done for us. It is known from the work of Paley and Wiener [ 12 1, Levinson

1 9 1, Schwartz I 15], and many others, that the functions
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•in(20 x), cosC2 c x), ( = Ck- ) + ( (l/k), k = 1,2,3,...
k k k
2

form a Riesz basis for L LO,IrJ, provided the C) are distinct, as in the
k

case here. Among other things this implies the existence of a unique, biortho-

gonal, dual basis p (x), q (x), with
k k l

jsin(2W x)p (x)dx = cos(2w x)q (x)dx =fok jf k j kj,

in( )q(x) dx - o( = (x)dx =0.
OS k jk j

2
i' Each function f in L U0,1r has unique expansions

00 Af(x) = I(c sin(2co x) + d cos(2w x)) = 7(c p Cx) + d q. (x)),
kal k k k k k=l k k k k

2
convergent in L [0,11 1 with

c a (x)f(x)dx, d= q (x)f(x)dx,
wO k 0 k

A frAc a sin(2 x)f(x)dx, d cos(2A x)f(x)dx
k 0 k k "0 k

and, for certain positive numbers R, r

2 2 2 2
rf 2 2< Ic I + id I) _ RIfI1 2.iL LfO,- J k=l k k [LCO,
R)ift 2 .0 2 2 if12

/R) c Id I (1/r)
L [,11 k=l k k L (o.'ri

The moment problem
Tr 2

mx) ) dx - , k = 1,2,,...[ k" k k

in this case becomes 2

7) k .1aIx)sin (Cx)dx k + (1)), k 1,2,3,...
k rk k

and, since Sm(x) is assumed orthogonal to constants, this is the same asf m(x)cos(2t) x)dx " 2 2/(7) (k +6(1))

k k k
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The unique solution lying in the space spanned by the functions q , j = 1,

2,3,... is

o0 2 2

m(x) = 2 .Z ~ ( j +&(l)q x
j.i j j j

convergent just in case the sequence of coefficients is square summable. Again

this solution is non-unique; one may add any convergent linear combination of

the p (x) and still have a solution of the moment problem. Here the displayed

solution cannot be characterized as odd or even relative to the center point V /2

of the x-interval because the functions cos(2 wx), sin(2& x) have no such prop-
k k

erties, except in some asymptotic sense as k * oo.

Finally, Case 3 is the most complex because here
2 2 2 2

0 (x) =I/ cos (C x + l = +/ (cl * cos(2C4x + 2g ))/2).
k k k k k k k

The constant term can be discarded for the same reasons as before and, since

cos(2 a) x + 2 S ) = cos(2 S )cos(24 x) - sin(2 )sin(24I x),
k k k k k k

the relevant moment problem becomes

01 ; m~~cos2eox~dx+ Jfm (x) sin (2 x) dx

2 2
-N,- _2 )Ic C(ke)) + &l))),

k k

where, as k 4 oo,

cos(25 ) 1 + L9 (l/k)
k kSk = -sin(2 9 (1/k).

Perhaps the most natural solution here is

2 2
j(x) =-2 ((j & ())))[ q (x) p (x)]

with convergent linear combinations of the functions qq (x) - o p (x)

J5



constituting the space of functions which may be arbitrarily added to Smx), as

displayed, without changing its property of being a solution of the moment problem.

If we maintain m(x) = 1 and suppose that the equation m(x)y + y = 0 is, in
tt

reality,

y - (p(x)y) =0,
tt x x

then perturbations p(g) = 1 + gp(x) about the nominal p (x) 1 lead, as noted
0

previously, to the equations

0 (x)(Sp(x)tI(x))'dx = Spx)(0'(x)) dx = , k = 1,2,3,...,
0ok k fO k k

which may be analyzed in much the same way as the problem for Sm(x) treated

in detail above with comparable solutions and non-uniqueness aspects as were de-

veloped there.

To conclude this section on identification from frequency data, let us con-

sider the case of the Euler-Bernoulli beam, which corresponds to

M(x)y + y 0
tt

with

y (EI(x)y)xx x

and appropriate boundary conditions, for example, the cantilever beam (the clamped/

free case) corresponds to

y(Ot) = y (O,t) = 0,

CL,t) (EI(x)y )l - 0.7"X Gxx x x L

If we begin with m (x) - 1, EI(x) 9 1, L , and consider m(x) = 1 + m(x)o0

for small am(x) we are again led to the moment problem

0 k k

36
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As we have seen earlier, if in this case we set CO = ; , the C are the posi-
k k k

tive roots of

I + cos(6 1)cosh(W V) = '

or

cos(W 'IT) = -(coshCWO Vi'))

leading to

=.Ckj + ( e .
k

Then from the equation

c(-sin( -V) - sinh 11) + d(-cos(W f) cosh(W 1r)) 0

it is clear that for W)= W we must have

= , C ) +Ye k
k k k

d -d + -- e k
k k k

where, if the eigenfunctions 0 Cx) are normalized,
k

1imZ
k.oo k

for some positive constant V and the Y, are uniformly bounded. Thus
k k-

k k
~ W(x )-'(,+ Y" e )(sin(Co x) + e )k kkk-k

+ +- e )cosCO x) - e k ) + )e
k k k k k

From this it may be seen that 0 (x) is a linear combination, with Launded coef-
kI ficients, of the functions

sin(w x), cos6 x), e , e
k k

In this case we know from the theory of the operator X itself that the 0 (x

2 k
are orthonormal in L [Otte], and hence independent, but no theorems are readily
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a lb otheron

2
available concerning the independence properties of the functions (0 (x))

k
which constitute the defining kernels for the moment problem equivalent to the

first order frequency-based identification problem f-r S m(x). Interest in

this problem will thus lead to further study of tr.e independence properties

of complex exponentials and related functions (see 1 1" 1, [16 1).

The results noted above for the vibrating string all have the characteristic

that, in terms of density of the exponents of the exponential functions involved,

only half as many equations are available, based on observed frequency perturbat-

ions, as would be required to determine .mCx),-or p(x), complete.. + - -

boundary control force can be implemented, consistent with the boundary condition

Y(1'11t)
X

for example, we may obtain the complementary set of equations by determining u

via boundary feedb .. For example, with

VC) - 4"y ',t),

t

another set of perturbed spectra, and related moment equations, can be obtained,

corresponding to the boundary condition

y ( r,t) + y (W,t) - 0
x t

and these, along with those obtained for u(t) = 0, can be shown to be sufficient

to determine Cx), or pCx4 , completely. This is in agreement with the more

global, but theoretical, results of Borg I 1 1, [8 1.

It is likely that in most applications the identification probem will be

less complicated than the one we have tx-ated here. In many cases we may e.r et

,'hat it r4.1 b.- known in advance, for the mass perturbations 'm(x), for example,

that

oi8



where m (x), m (x),...,m (x) are functions known in advance. This would be the
1 2 r

case, for example, if the individual terms represented fuel or payload of un-

known rams but stored in known configurations on the elastic body in question.

In such cases the moment equations in fact overdeternine the coefficients/A

to be identified; some sort of least squares solution has to be implemented,

which leads to an unambiguous result provided that no nontrivial linear combi-
2

nation of the m (x) is orthogonal to all of the squared eigenfunctions (0 Cx))
k k
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